TEMPERATURE FIELDS AND DISPLACEMENT OF PLATES
OF LINEARLY VARTABLE THICKNESS

M. D. Martynenko and N. I. Il'inkova UDC 539.3

The problemof thermoelastic bending of plates of linearly variable thickness is
solved by the method of a small parameter.

Let a plate of the linearly variable thickness h(f)=ho[1+7\4(2L—i)] bounded by a plane

a
on one side and by a conical surface of large apex angle at the other (Fig. 1) be deformed
under the action of a uniformly distributed load of intensity qy and a temperature field with
given temperatures T*; and T*, of the surfaces bounding the plate. It is assumed that the
plate is simply supported along the outline and its endfaces are heat insulated.

1. The problem of determining the temperature field in a plate reduces to the solution
of the Laplace equation
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under the following conditions:
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We introduce the small parameter A in (1) by using the change of variables
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where P is the angle between the normal to the middle surface and its axis. For [A(hy/a)]? <<
1 we have the representation

g, = arctg <?L —Iza"—) = E (—1*

We seek the desired solution of (1) in the form

T 5= 3 2T, 0, B,
h:zo ’ (3)

Fig. 1. Profile of a plate as a function
of the sign of A.
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where T(p, £) is the transformed function T(r, z) upon substitution of (*). The first two
coefficients of the series (3) are found from the equations
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where t = hy/a. The boundary conditions
To(p, 0 =T3 Talo, 1) =Tz 75 (0, )< oo; (Tw)(l, =0, k=0, 1 (6)

are appended to (4) and (5).
The following expression can be obtained for T,(p, £) by the Fourier method:
Tolp, & =T+ (Ts — T)E (7)

We seek the solution of (5) in the form of the series

Tolo = 1 (8, (wo) (8)
k=1

where J,(pkp) is the zeroth-order Bessel function of the first kind. Substituting (8) into
(5), we find an equation for uy after manipulation
1
| Ao
Integrating this latter with the boundary conditions taken into account, we obtain for T,
(p, )

— Witty (B) = 2(T5 — T1) EA,.
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R
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k=2 33

— E} Jo (Urp). (9)

Limiting ourselves to two terms of the series in (8), we arrive at a two-term asymptotic
formula for the temperature distribution in the plate

e [ATE & 2ATRA, [ sh(utd) (10)
T D =Ti AT ARE Dy 3 [Shw) &]m.uhp)},

where AT* = T*, — T%,, Ak = [2 — wH,(uk)1/JI%(uk).

2. The equilibrium equations for plates of the shape under consideration have the form

(1]

d d
_ —_— =0,

df' (N,r) N9+ dr ((POrQ)+qrr (11)

d d -

—Jr—(Qf)f-‘&r—(%fNr)‘]"qzr =0, (12)

d
?(M,r)—Me—QrZO, (13)

where the notation in [1] has been used.t For the generalized forces and moments used here,
the following vrepresentation is valid [2]:

+In {2, p. 34], the term —g;(Qmw) is neglected in the first equilibrium equation without a

basis for the error induced here.
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du u w
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where u, w are displacement vector components along the r and z axes; = Eh/(1 — v2), D

3 A 2 =
Eh3/12(1 — v2); E and v are the elastic modulus and Poisson ratio; and €T and «T are general-
ized pure thermal strains.

The constitutive system of equilibrium equations in displacements has the form
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. : g
vhere ¢ = u/a, W

= wfa, p = r/a, €T, KT = aKT are dimensionless variables.

The boundary conditions

-~

- dw
Miloer =0 Nl = 0 0l =05 =1, ,=0(1) (16)
correspond to the simple support case. The thermal strains €T and kT are determined from the
formulas
£
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where oT is the heat-conduction coefficient, and T(p, §) is the temperature distribution with-
in the plate.

Let us represent u and w in the form

oo

~ B
U == E;‘u Uy,

e

(19)
h=0 :
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Fig. 2. Distribution of w
of a plate for E = 2:10°%,
0.25, t = 0.09, qz = 1, T*
190°C: 1) x = —0.4; 2) A
0.2; 5) 0.4.
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Substituting (19) and (20) into (14) and (15) with (17), (18), and (1
count, we obtain

along the radius
aT = 13+107%, v
1 = 25°C, T*,
=—0.,2; 3) 0; 4)

(20)

0) taken into ac-
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The boundary conditions (16) are transformed into the form
to(1) + vizg (1) = (1 —v) o (T1 — AT#),
- o - 14w N
wo (1) + v (1) = ; o, ATH, (25)
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w1 (1) + vii (1) = (1 v)aTLA;f S (e T 0
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_Integrating (21)-(24) with (25) and (26) taken into account, we obtain expressions for
uo, Wo, Wl'
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Numerical computations by using (19) and (20) show (Fig. 2) that taking account of the
initial middle-surface curvature can result in significant corrections to the classical form-

ulas for determining w, Mr{e), Mr(e), which are obtained under the assumption that the plate
middle surface is a plane (A = @ = 0).

NOTATION

h(r), plate thickness; a, outer radius; A, small parameter characterizing the change in
plate thickness along the radius; A%, = E/(1 — v2); uk, roots of the first-order Bessel func-
tion of the first kind J;; N, Q, My, normal force, transverse force, and bending moment act-
ing in a section normal to the middle surface; No, Mg, normal force and bending moment acting
in a section tangent to the middle surface; H;, Struve function.
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